写私信 (不得超过120字 / 0字) X
确定 取消
  • 1 粉丝
  • 0 关注
  • 3 动态总数
  • 最新加入: 设计竞赛
  • 分享商品: 3
  • 浏览数量: 47365

相册

我的发布的资讯

  • 无论技术如何变化,或者新的创新如何让人感到眼花缭乱,制造业的基本目标都保持不变:减少意外停机时间,降低成本,消除不必要的浪费等等。随着3D打印技术和材料的进步,一些现有供应商正在创造增材制造领域的专业知识,以便控制自己的供应链,改变他们向客户交付产品的方式。3D打印正在深度影响供应链与商业模式,并将创造出指数级增长的商业机会。与之对应,制造业生态系统正在迅速变化,原因在于3D打印技术不断增长的能力。传播增材思维火种,本期的SparkTALK,由SparkUnion-星火联盟成员-惠普3D打印与数字制造业务中国南区负责人赵华先生,谈谈他对于传统制造业供应链给予3D打印的机遇和挑战所进行的深度思考,以帮助企业在动态变化的生态系统中茁壮成长,并获得制造业附加值创造能力。[图片]     “晚上七点客户联系确定设计,八点开始3D打印加工到十二点,凌晨一点跨城寄出,早上八点到达千里之外用户的手中”。最近的一篇文章让每天在制造之都发生的故事重新引起关注,让无数人惊叹,也再次为制造业离不开中国的说法注入了自豪之情。与此同时,此类现象引出的一个问题却有意无意被忽略:有这么快速的工程原型设计及制造响应服务,中国的科技企业在多大程度上受益于此提升核心技术预研和高附加值产品开发能力。3D打印对供应链带来的改变是直观的:一方面,我们可以大胆利用这一轮全球范围内设计摆脱束缚重新变革的浪潮,寄希望更多行业的原创产品向价值链的上游拓展;另一方面,在原有的基础上,我们还可以稳妥的将3D打印定型为一种对传统生产加工方式的快速替换,而继续专注于供应链成本和效率的极致优势。[图片]3D打印与数字制造带来全球范围内价值链与供应链的不可逆改变在工程技术领域,绝大多数的产品开发都要经历从市场调研、产品定义、原型设计与验证、试生产到批量制造、上市后的服务维护直至被新产品逐渐替代的过程,这一过程被称之为产品生命周期。这个周期在不同行业、不同市场中出现、时间跨度是几个月,或者是数年乃至更长不等。这个过程中企业(OEM)的核心竞争力与利润往往集中在某些特定擅长环节,称之为价值链的关键。而随着过去几十年全球制造业的分工布局,越来越多的企业将市场销售/研发设计与生产组装/采购物流等环节剥离开来,后者形成一个以代工厂(CM)及多级供应商为代表的完整跨行业供应链系统。这种制造环节高效,但是在生产效率的PK达到无与伦比的精益化程度后,促使OEM企业更多投入在市场营销与技术研发领域,以挖掘在非生产环节的核心价值,并区别于竞争对手。3D打印,特别是工业3D打印在过去三年的技术突破和需求爆发,很大程度上正是顺应了这种需求:给面向最终用户的产品提供更多快速创新,个性化定制化的可能,以及给企业 (OEM)带来重新解放设计变革性提高产品性能的基础。前端企业的设计采用了3D打印带来新一代产品后,这又反向要求后端的生产制造环节加快采用3D技术的步伐,以满足量产需求。需要注意的是,我们常常容易低估这种由于基础技术突破和先行者的积极采纳,而给各行各业带来的累积影响,直至其成为行业共识而变成难以逆转的局势。完善的传统供应链基础—对于3D打印应用接纳的挑战工欲善其事,必先利其器。正是由于对于制造业趋势的洞悉,过去几年,多数国家在各自的先进制造业转型计划中,都将3D打印与数字制造列为基础学科,将它作为提升各行各业技术进步的重要工具。但是受到起始因素及比较优势影响,在实际采纳与应用路径上却慢慢显示出了清晰的不同:在以德国和日本为代表的国家,传统的制造业一级供应商或者方案集成商成为了3D打印助推的一支重要力量。这很大程度上是由于生产制造本身多数在其他国家进行,本地的供应商/服务商在多年积累中已经与企业客户(OEM)在上游研究设计和验证上有了深度的融合,以获得附加值利润的共享,成为了新技术前瞻性应用的重要力量。而在美国工程技术行业,在此之上企业很多时候会通过公司内部设立新的边缘创新部门来独立于传统决策流程,进行更灵活的研发探索,以推动新技术到新产品的开发。这些情况虽有些许不同,但这些国家的共通点是,由于制造组装和供应链本身不在本国进行,反而在采纳新技术时容易凝聚共识。将3D打印突破点选择在技术本身所能带来的设计性能提升,以最大化企业在市场上的长期竞争力。与此相反,我国做为制造业全球最大的市场,做为全世界唯一拥有联合国产业分类当中全部工业门类的国家,拥有着全球最完善的多级供应链体系,也逐渐形成了对于不同工艺甚至不同组件各司其职的专业分工。这一传统制造最强的优势,在新技术的采纳吸收上反而容易由于受益主体和标准不明确而形成空档期,以至目前市场上3D打印服务行业热火朝天,细分行业应用领域创意百家争鸣,却暂时很少见端到端用增材制造解决工程整体从设计到生产制造的规模使用案例。不过让整个行业欣喜的是,过去的一年里我们看到3D打印在国内市场的应用部件迅速上升到千万件量级,其中的很多部分经历了从原型到小批量试生产的产品生命周期。随着从设计师、工程师、产品经理、代工厂、供应商, 每一位个体受益于增材制造技术所带来的快速、经济、环保、新设计,这项技术在终端制造的应用也自然水到渠成。只争朝夕—从制造大国到先进数字制造强国3D打印与数字制造不是这些年来我国制造业引入的首类变革新技术,也不会是最后一项。工业机器人、传感器及数据分析等等,在进入初期都经历了类似的挑战,短期投入与中长期回报的平衡,开发主体在设计企业、代工厂和供应商之间的平衡,在初期得到了验证后都迅速在庞大的制造业市场呈现了指数级的增长,而最终带来了制造业整体竞争力的提升。[图片]制造业微笑曲线同样的作为第四次工业革命的关键技术, 3D打印的积极采用也将助力于制造业。随着越来越多的国内企业希望有自己的核心技术,走向正向设计的道路,这些企业正在从微笑曲线的底部向两端呈现转型上升的发展趋势。随着正向设计与3D打印优势的结合、人工智能与工艺开发的结合、数字孪生与生产控制的结合,这些因素积极的推动3D打印与产业化的深度结合,将整个价值链沿微笑曲线的两端延伸,这也将助力国内的创新型企业推动我国实现从制造大国到强国的顺利转变。

    - 暂无回复 -
  • 春节将至,天津“心目影院”、理工大学和昆明路社区的志愿者依托机械臂机器人,协助来自社区的10余位盲人朋友写福字。现场,志愿者们帮助盲人朋友触摸3D打印的立体福字,感受福字构造,并帮助盲人朋友铺好毛毡和纸张,指导正确握笔和初步练习。书法家和志愿者手把手引领盲人朋友在连接机械臂机器人的ipad上书写福字和对联,再由机器人模拟书写出来,为盲人朋友带来新春的祝福。[图片] △图片来源:天津日报3D打印技术在帮助盲人朋友认知世界方面,有非常好的效果,我们来看看国内外的一些案例。2015年英国一家公司打造“看不见的艺术”项目,将世界名画用3D模型打印出来,意在为盲人提供一种通过触摸来欣赏经典艺术品的独特体验。[图片] △图片来源:环球网      无论在世界哪个角落,只要拥有一台3D打印机,你就可以将模型打印出来。达芬奇的经典杰作《蒙娜丽莎》是第一幅以3D模型的形式面世的艺术作品,并已被免费提供给视觉障碍者进行该类艺术体验,弥补其不能亲身感受这些经典杰作的遗憾。在一段YouTube视频中,一位名叫里卡(Riikka)的女盲人一边抚摸着蒙娜丽莎模型的五官,一边由衷感叹着其精妙之处,并称这一奇妙的体验激起了她强烈的好奇心。2019年7月,江西省九江市袁斌科研小组研发出国内第一本3D打印盲人浮雕书,盲人书是制约盲人教育的关键因素,目前盲人书为纸质凸点式,受铝板压印技术制约,只能实现连点凸线等简单2D插图,对于盲人理解物体3D形状具有质的缺陷。如今袁斌科研小组采用3D建模-3D打印技术,研发出国内第一本3D打印盲人浮雕书,使盲人书浮雕化,以后盲人学习物体知识时可以触摸3D形状。本浮雕书为重体力劳动题材,弥补盲人难以通过触摸身体来理解劳动姿态的认知缺陷。封面上方为“劳动”的国际盲文,首字采用大写。作为试验品,第一本浮雕书页码少,内容只有4页,分别为劳动者对前、后、上、下对象的劳动姿态。本浮雕书需要志愿者、盲人亲朋向盲人做辅助解说。2020年1月,北京的学生公益组织Joiner studio,成功为北京视障学生提供了大量的盲用教具学具。学生表示,3D打印教具学具很好用,通过触摸有真实的感受,通过 模仿很快能做出模型的手势,然后反复练习,建立手语和抽象概念之间的联系。视障教育属于特教的一部分,视障学校大量缺乏耐用,精细,定制化的教具学具,因为经费和需求种类多但是量小的关系,绝大多数教具学具都是老师们手工制作的,而Joiner studio通过FDM3D打印技术,为学生们提供了大量的3D打印教具学具,为学生打开时一扇认识世界的大门。据了解,目前,Joiner studio负责给学生们做教具学具活动的策划和组织,主要由北京四中国际部和北师大二附国际部的高一到高三学生组成,学生们利用3D打印机为视障学生们制作教具学具。总结因为3D打印技术在定制化方面具有优势,所以特别适合盲人认知世界,把原来平面上二维的知识通过3D打印转换手可触摸的三维知识,仿佛打通了视觉障碍的通路。而且3D打印大大降低了定制化的成本,无需开模生产,可以说是随想随打,随打随用,能够发挥参与者的主观能动性和积极性。

    - 暂无回复 -
  • 当今的飞机结构由许多不同的材料组成。例如,空中客车A350WB的机身和机翼结构主要由带有一些金属零件的复合材料制成。在这里,按照经典的混合设计,零件通过螺栓和铆钉连接在一起。这种设计导致组装时间,精力和成本增加。另外,在这种经典的混合设计中,大量的紧固件引入了不必要的重量,以及在载荷引入点处的应力集中。[图片]在TOAST项目中,Premium AEROTEC(德国奥格斯堡)是A350机身结构的一级供应商,它提出了一种全新的方法来连接复合材料和金属。这样,可以消除具有螺栓和铆钉的经典混合设计的缺点。Premium AEROTEC使用现代混合动力设计,在不到五个月的时间内开发并制造了类似飞机刹车片结构的演示器。它包括由增材制造(AM)制造的钛负载引入配件和碳纤维增强聚合物(CFRP)热塑性复合材料板,并使用热塑性复合材料包覆模制而成。该演示器的创新之处在于无需螺栓或紧固件即可连接各种材料。这仅通过使用增材制造和热塑性包覆成型才能实现。钛金配件的下侧设计有销钉,而螺旋形结构设计的加强筋则很容易用AM生产。然后将AM钛零件和热塑性复合材料板放入热成型模具中。在热成型过程中,紧随其后的注射成型步骤将这两个组件压在一起。在此步骤中,将V形热塑性复合材料加强筋包覆成型并压入钛配件的海绵状回旋加强筋中。通过材料连接(CFRP – CFRP)或封闭形式(钛AM – CFRP)实现了该混合演示器的接头。同时,进行了确定接头机械性能的结构测试。这些测试表明,载荷传递能力类似于铆钉和螺栓的传递能力。与使用机械紧固件的经典设计相比,这种现代混合设计的优点包括无需紧固件即可快速制造和组装,所需零件更少,并且组装过程更短且自动化。此外,通过使用AM和注塑成型来提高设计自由度的效率可减轻重量。该技术可应用于必须在点和曲面之间传递载荷的任何地方。Premium AEROTEC是世界上第一家为飞机连续生产提供由钛合金制成的3D打印组件的组件制造商。Premium AEROTEC是航空业的全球参与者,2018年的营业额达到20亿欧元。其核心业务是金属和碳纤维复合材料飞机结构的设计和制造。该公司在德国的奥格斯堡,不来梅,汉堡,诺登汉姆和瓦雷尔以及罗马尼亚的布拉索夫都有工厂。Premium AEROTEC在全球拥有约10,000名员工。

    - 暂无回复 -
  • 轮胎的性能取决于轮胎模具中的花纹设计,花纹是重要而又复杂多变的加工难点,其加工的精密程度直接影响到轮胎的精度和质量,甚至是轮胎的安全、驾驶的舒适度等等。花纹的结构往往呈现出空间三维扭曲、轮胎花纹具有弧度多、角度多的特点,采用传统的加工手段难以精准完成,即使采用电火花加工工艺也存在一些难以解决的问题。但实现设计的复杂性,是选区激光熔化增材制造-3D打印技术的优势。在轮胎模具制造领域,3D打印技术有两个层面的应用:首先是复杂轮胎模具,尤其是高性能要求的冬季胎或雪地胎模具中的钢片制造,这一技术已在国内外轮胎模具大厂中投入使用;另一个层面是复杂花纹模具的一体化制造,即无需单独制造钢片、镶嵌钢片,虽然目前仍存在变形、成本高等应用难点,但这一应用在工序简化和提升轮胎性能方面极具优势。将通过两期文章,分享机械加工企业GF 加工方案在以上两个层面中的应用案例及技术解决方案。本期分享的是,GF 加工方案的金属增材制造技术在轮胎模具钢片生产中的应用。在下篇中,将分享GF 加工方案如何通过打印策略优化,应对复杂花纹模具一体化增材制造中存在的难点,以及与其他加工技术相衔接的整体解决方案。满足复杂性与强度需求  个性化批量生产轮胎行业巨头米其林做为最早应用增材技术的企业之一,米其林最初涉及增材技术的时间可以追溯到 2000 年。经过数年的潜心研究及试验,米其林在 2014 年推出的通过增材制造模具制造的高端轮胎-CrossClimate Range ,这一技术使轮胎在寿命周期内始终保持高性能表现。随后推出的全天候轮胎 Premier A/S 和 LTX 系列产品,也是通过同样的技术制造的。国内轮胎企业在增材技术的应用主要着眼于钢片制造,如山东豪迈应用金属3D打印技术生产的钢片具有复杂、立体的纹路,从而使子午线橡胶轮胎具有冬季雨雪路面持续移动、夏季干燥路面有效制动及磨损胎面新沟槽持续牵引等优势 。轮胎的外形是橡胶在轮胎模具中硫化形成的,而冬季胎或雪地胎的窄缝(见下图)是由模具上相对应的钢片成型的。[图片]全天候胎(左)和雪地胎(右)纹理比较。来源:GF 加工方案随着对轮胎性能和质量要求的提高,原本就复杂多变的花纹图案,复杂程度也越来越高。花纹结构开始出现了空间三维扭曲、弧度、角度多的特点(图3),采用传统加工手段已经难以满足所需要的精度。此外,一副模具上需要的钢片种类越来越多,原来以冲压大批量生产钢片的方式已不具备成本优势。而消费者日新月异的要求,则直接导致了轮胎花纹更新换代速度加快,同时对生产商提出了更为严苛的要求:模具数量少、多样且形状复杂。应对少量、多样化和复杂的设计,正是3D打印技术的优势所在。[图片]典型的3D打印钢片(空间三维扭曲、多弧度、多角度)。来源:GF 加工方案在轮胎模具制造中,3D打印最经典的应用案例非钢片莫属,无论是尖边、圆边、3D 立体结构,或者用来固定钢片设计的细微纹理,都能透过3D打印来实现(见下图)。[图片]3D打印钢片的特点。来源:GF 加工方案此外,同一批次的生产可以打印多种尺寸、形状的钢片,使用 3DXpert 软件更可以修改钢片设计,真正意义上做到个性化的批量生产。使用 GF 增材制造设备生产的钢片,密度可达到 99.50%,使用不锈钢材料打印钢片的强度达到 1000MPa 以上,使用模具钢打印钢片的强度达到 1800MPa 以上。[图片]同一批次的不同钢片设计。来源:GF 加工方案同时,为了提升增材技术的经济效益,降低钢片单件生产成本,极大化每一盘面 (each build) 能打印的钢片数量至关重要。目前一个3D打印钢片的成本约在 10 – 50 人民币之间,成本的差异除了钢片设计不同,也受到增材设备性能影响。举例来说,标准增材设备的打印成型面积为250 x 250mm,性能好的设备基本能用上全部的打印空间,一个盘面上打出来的钢片完全能满足强度要求。而有的设备可能只能利用到打印盘面的五、六成,其单件生产成本骤然增加。目前 ,3D打印钢片发展的趋势除了形状复杂程度增加,产品也越来越薄,且对强度的要求越来越高, 因此对于设备的性能要求也越来越严苛。GF 金属增材制造设备具有优化的光路、风场设计,以及大于行业平均的成型面积(275x275x380mm),实现复杂钢片的低成本、高质量生产。如上所述,轮胎性能取决于模具花纹,花纹的关键取决于钢片设计。增材制造的钢片充分发挥了技术特点,大大提升了轮胎模具的性能,增加企业竞争力。–下篇预告–3D打印的钢片仍面临着在模具中进行镶嵌的问题。当前,钢模多采取人工镶嵌的方式,即在模具型腔内加工出钢片槽,然后用人工将加工好的钢片镶进去。少量的钢片在模具制造中不成问题,但一副冬季胎模具经常需要动辄上千片的钢片,有些特殊设计的轮胎甚至使用了超过 4000 片钢片。钢片镶嵌仍然是模具制造商十分困扰的问题,尤其伴随钢片数量增加而来的钢片距离减少,导致空间过小而难以施展,此问题对于距离小于 5 – 6mm 时特别明显。而通过金属3D打印技术直接制造整块复杂花纹模具,有望简化工序,克服目前钢片镶嵌中存在的困扰。事实上,增材制造行业里不乏此种尝试,但是大多停留在技术验证阶段,且并不具备量产性。在下一期的轮胎模具增材制造文章中,将分享GF 加工方案如何通过打印策略优化,应对复杂花纹模具一体化增材制造中存在的难点,以及与其他加工技术相衔接的整体解决方案,敬请关注。

    - 暂无回复 -
  • 随着3D打印技术的发展,3D打印在口腔上的数字化应用也在不断地突破。这些应用的深入优化了医疗过程,减少了病患诊疗痛苦,且实现口腔个性化定制。那么具体3D打印可以打印哪些模型应用到数字化口腔诊疗过程中呢?1. 种植手术导板口腔种植手术数字化3D打印导向模板,是将术前虚拟设计的种植体方案精确转移至患者口内的个性化手术辅助工具。它可以帮助在手术中精确地控制种植体植入的位置、方向、角度甚至深度,辅助医生的种植体植入,使最终的种植修复与术前的理想设计方案实现统一,有效降低手术风险、缩短治疗时间。[图片]2. 蜡型支架用于辅助固定义齿,保持义齿安装精准的支撑体。[图片]3. 间接粘接盘用于在传统正畸应用中,打印间接粘结托槽用的托盘。[图片]4. 蜡型牙冠用于辅助牙医初步估计治疗设计的牙冠。[图片]5. 修复模型由口腔扫描仪或其他3D扫描仪得到的牙齿数据所打印的修复模型。[图片]6. 义齿基托用于打印全口义齿或局部可摘义齿的基托。[图片]7. 牙模与临时冠用于打印临时牙冠或临时牙桥。[图片]8. 人工牙龈用于种植修复模型使用,得到精准的模型数据。[图片]9. 隐形矫正模型用于正畸领域的模型。[图片]从以上可以看出3D打印技术在数字化齿科领域应用多种多样,基本可以满足医师在诊疗过程中的需求。事实上,数字化齿科的应用早已开始渗透进口腔医学。尤其是国外,数字化齿科的占比较国内更高。近些年,国外专业做数字化齿科的公司将目光投放到了中国。知名如Align Technology公司旗下的隐适美——隐形正畸矫正器,在国内已经相对普及。区别于传统钢牙,患者只需要佩戴一副副透明牙套,就能逐渐将不整齐的牙齿排列整齐。而这些牙套的实现形式正是通过3D打印机。同为美国知名公司,SprintRay是一家专业从事数字化齿科服务的公司,为数字化齿科从打印设备到技术支持提供一系列完整的三维数字化解决方案。目前该公司在中国的设备销售和服务支持主要由广东月牙医疗科技有限公司负责。月牙医疗是国内专业从事数字化齿科行业的公司,已与多个口腔诊所和口腔医院达成合作,并且会定期举办数字化齿科沙龙和行业内专家分享3D打印在齿科的最新应用和案例。总的来说,以3D打印为基础的数字化齿科技术,大大提升了治疗过程的精确度、美观 度和治疗效率。同时降低了种植牙等手术的难度与门槛,减少了患者的病痛。

    - 暂无回复 -
  • 1月2日,由亚太3D打印联盟和珠海西通电子有限公司及等多位大型3D打印企业联合发起的大湾区3D打印产业链联盟在深圳正式成立。为推进大湾区3D打印产业进程,促进相关主体间的交流和深度合作,引导供需对接和资源共享,培育企业新时代的核心竞争力,由亚太3D打印联盟和珠海西通电子有限公司以及多位来大湾区,包括深圳,珠海,广州,东莞各地3D打印供应链企业及大型成品企业牵头成立了联盟。本次大会邀请到以中国智能制造联盟理事长李小平、中国信息工业化管理部副主任张斌武、清华大学智能制造研究中心秘书长黄人万,广东省3D打印联盟主任杨冰 等为代表的来自相关单位领导、知名企业高管共聚一堂,围绕3D打印产业链主题,聚焦当下3D打印企业经营难点,就企业战略框架、实践方案、市场拓展,供应链共享,成本优化等相关内容展开了精彩的分享与讨论。[图片]当天,在众多参会者的见证下,西通集团谭建儒、东莞科恒董事张恒、东莞百任总经理严小华、深圳亿祥黄敏联手启动成立仪式,宣告大湾区3D打印产业链联盟正式成立。同期,在会议上,珠海西通有限公司被推举为会长单位,近70多位专家作为联盟第一批成员获得了相应的证书授予。 [图片]本次会议吸引了众多专业人士参与,其中以东莞科恒、东莞百任、深圳亿祥、等为代表的一线厂商更是为大会带来了丰富的供应链资源和解决方案,范围涉及上位软件,电子硬件,电机,钣金件等相关领域,展区现场一度人头攒动、络绎不绝。

    - 暂无回复 -
  • 自行车座垫是自行车与用户身体紧密贴合的一个部分,但是,座垫的舒服度是非常主观的,如果你问是个起手最舒服的座垫座是什么。很可能你将得到十个不同的答案。有没有那种既能通风,又舒适的自行车鞍座呢,要不用3D打印机制作一个?为了获得适合骑手的鞍座,要考虑许多因素和偏好,例如性别、骑行方式和体重。在尝试了多种生产自行车鞍座的方法后,3D打印公司Carbon和美国自行车制造商Specialized正在3D打印的帮助下解决不舒服的自行车座椅问题。两家公司共同开发了“第一款数字印刷自行车车座”,旨在不仅提高骑行者的舒适度,还提高性能和保护性能。       [图片]     这些鞍座预计将在2020年推出。3D打印座垫采用了一种正在进行专利申请的结构,这种结构可以无限地改变聚合物的密度,这是泡沫所无法复制的。最终的结构是一个由14000根支柱和7799个节点组成的网格,而且,整个样式可以在结构和密度上进行定制,以提供真正针对特定身体的舒适度和支撑力。         [图片]       [图片]     这鞍座使用称为“镜面技术”的工艺制造,车座整合了复杂的网格结构,旨在吸收冲击力并提高稳定性,从而带来更舒适,更安全的骑行体验。使用Specialized的压力测绘技术设计的中空格子结构也很轻(仅重约189克)并且透气,将格子几何结构整合到3D打印车座中,使动力车座能够快速反弹 ,类似于骑手坐骨的悬挂。为骑行体验增添了另一层舒适感。       [图片]3D打印技术的应用可以让做点变得更加完美,它可以改变鞍座每一块地方的材料密度,改变支撑和缓震等区域材料密度来实现不同的功能,从而使产品变得更符合车手的需求。

    - 暂无回复 -
  • 耙式气流测头是一种用于发动机开发的部件,能够获取高精度的温度和压力读数,以帮助工程师评估发动机性能。直接安装在发动机气流路径上的耙式气流测头必须满足极高的标准要求,这样才能承受极端的温度、拉伸和压缩载荷。因此,耙式气流测头是一种高度复杂的部件,必须符合精确的尺寸要求,同时具有光滑的空气动力学表面,才能实现精确的测量。[图片]耙式气流测头具体位置, 来源:通快四个精心打磨的组件通过手工装配和单独焊接,才构成一个耙式气流测头。其核心处有几条用作通道的内管,壁厚小于 0.3 mm。这些通道需要插入耙式气流测头细长主体的后部,并焊接在 Kiel 头上的适当位置。然后将耙式气流测头主体用盖板密封。“必须以最高的精度插入那些精细的通道,”López-Vidal(Ramen 公司研发经理)解释说。“只要有一个 Kiel 头焊接不正确,整个耙式气流测头都将报废。Kiel 头的尺寸公差为+/-0.05 mm,具有狭窄的连续开口,其末端集成有流量传感器。”Ramen 工程师发现,增材制造是精密耙式气流测头的理想制造方法。而实现这一任务的挑战在于,必须设计一个与增材制造兼容的方式。但是前期生产中出现耙式气流测头变形的情况,打印过程也不顺利,狭窄通道中沉积了粉末和其他固体。此外,增材制造工艺无法满足尺寸精度、光滑度、无孔耙面等各种要求。[图片]增材制造的耙式气流测头,来源:通快一次偶然的机会,López-Vidal 及其团队在 2017 年法兰克福国际精密成型展(Formnext)上莅临了通快展位,并和通快团队讨论了他们所面临的问题。通快团队开始寻找有效的解决方案。打印过程中最具挑战性的是部件方向问题,鉴于无法将这些部件连接到易损的 Kiel 头或部件内的任何位置,所以必须对齐部件,这样才能在没有支撑结构的情况下进行打印。还必须排除热变形的风险。这并非易事,因为耙式气流测头很薄且上部体积很大。这次的打印制造使用了 TruPrint 1000 。该机器的成型空间约为 100 mm x 100 mm,具有 200 W 的激光,适用于增材制造精密结构。这台机器成功制造了符合所有要求的首个原型。3D 扫描证明,原型具有所需的几何精度;同时通过显微照片,确定了 99.95% 的密度。但专家们渴望获得更准确的信息,因此他们将原型发送给了 X 射线和计算机断层扫描检查系统开发商和生产商 Yxlon,以进行 CT 扫描。Yxlon 验证了通道的连续性和孔的大小。通快专家还确定并检查了部件内部 40 多个测量值。测量结果表明:部件通道清晰,满足所需尺寸精度,并且孔径小于100 μm。因为重新设计部件缩短了生产时间,而且使用的材料量减少了约 80%。总之,通过 3D 打印耙式气流测头,总体成本降低了约 74%。而在这一行业中,这可是一个影响全局的数字。López-Vidal 还坚信,这一部件制造历程标志着增材制造将能够为航空航天业提供更加实用的解决方案。耙式气流测头只是增材制造应用的一个小小缩影,关键在于要积极采用新方法,让决策者及时了解增材制造所带来的全新机遇。

    - 暂无回复 -
  • 作者:汝晴、梦想家菜菜、慕一10月22日,在“直通乌镇”全球互联网大赛总决赛上,3D打印公司「LuxCreo清锋时代」获得了大赛冠军。同月,专攻数字化齿科3D打印机的「迅实科技」,宣布完成过亿元人民币的B轮融资。8月8日,「LuxCreo清锋时代」宣布完成KPCB领投,北极光创投、顺为资本跟投的3000万美元B轮融资。 8月26日,研发微纳米级3D打印设备及材料的「摩方材料」完成1亿人民币A+轮融资。在过去的两个月里,3D打印企业吸引了不少市场关注。此前,36氪也曾经对2018年、2019年的两年来3D打印领域的投融资情况以及目前3D打印整个产业状况进行了分析。(详情请看:发明30年后,3D打印现状如何?)继续3D打印的话题,国内3D打印领域主要有哪些玩家组成?相信读完这篇文章,你一定能得出答案。3D打印是什么?3D打印是增材制造的另一种说法,它是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术。增材制造可节约制造材料和加工时间,制作形态万千的物品,实现制造的个性化和定制化。增材制造实现了制造方式从等材、减材到增材的转变,改变了传统制造的工艺流程、生产线、工厂模式、产业链组合,被认为是制造领域极具代表的颠覆性技术。为抢占增材制造技术及产业发展先机,多个国家和地区将其列为重点发展方向,制定了相关规划及扶持政策。[图片]按3D打印产业链,可以根据上中下游分为3D打印材料、3D打印设备、3D打印服务、以及3D打印应用。而按照3D打印原材料的则可以分为金属3D打印和非金属3D打印两大类;按照应用上的区别又可以分为工业级3D打印、特种打印等。在这份行业图谱里,我们将整个3D打印行业拆分成金属3D打印和非金属3D打印两大类,并以相关的打印技术和应用范围为细分项为大家盘点整个市场的企业格局。一、金属3D打印[图片]1、金属3D打印材料与普通材料不同的是,3D打印材料需要应用特有的技术进行制备,来满足3D打印产品及3D打印设备对材料的特殊要求。根据所使用的3D打印技术的不同、制造的零件用途不同,所需要的材料也不相同。金属3D打印材料主要是金属粉末,主要材质包括钴基合金、不锈钢、工具钢、模具钢、镍基合金、钛及钛合金,以及各系铝合金等。据有关数据分析报告显示,未来市场3D复合打印材料的规模将不断增加,金属材料的应用也会逐年上升,预计2022年复合材料有望达到1.11亿美元,3D打印金属材料的市场规模达到8亿美元,金属材料的研发生产将有更广阔的市场空间。在金属3D打印材料领域,有公司仅针对特定领域提供专业材料。如「中航迈特」,主营业务业务就是航空航天金属 3D 打印粉末材料研发和生产,年产能将达至少1000吨;以及「融天航空器材」代理来自美国、欧洲的航空用3D打印金属粉末。更多的厂商是生产通用性的金属粉末产品。如「纳联材料」生产适用于SLM、EBM、DED 等技术的基合金、不锈钢、工具钢、模具钢、镍基合金、钛及钛合金金属粉末材料;同类公司还有「宇光飞利金属材料」、「金源智能技术」、「微纳增材技术」、「康普锡威科技」、「英纳特纳米科技」、「优材科技」、「中体新材料」、「上海状迈」等。此外,还有部分兼备打印设备和材料的公司,将在下文进行讨论。2、金属3D打印装备现在主流的金属3D打印技术有:激光选区熔化(SLM)、激光近净成型(LENS)和电子束选区熔化(EBSM)技术、直接能量沉积(DED)技术以及电子束熔丝沉积(EBDM)。[图片]来源:国家增材制造产业(3D)发展推进计划(2015-2016年)(1)激光选区熔化(SLM)SLM是目前金属3D打印成型中最普遍的技术,其工作原理为:计算机将物体的三维数据转化为一层层截面 2D数据并传输给打印机,打印过程中,在基板上用刮刀铺上设定层厚的金属粉末,聚焦的激光在扫描振镜的控制下按照事先规划好的路径与工艺参数进行扫描,金属粉末在高能量激光的照射下其发生熔化,快速凝固,形成冶金结合层。当一层打印任务结束后, 基板下降一个切片层厚高度,刮刀继续进行粉末铺平,激光扫描加工,重复这样的过程直至整个零件打印结束。(引用自铂力特招股书)该技术的优势在于可以广泛应用于复杂形状的金属零件的批量生产,而且大多数金属粉末都适用于这种技术,包括钛合金、铝合金、高温合金、铜合金、钴铬合金、 不锈钢、高强钢、模具钢等,得到的零件致密度几近100%。3D打印领域唯一的科创板公司「铂力特」的自研设备就以SLM 3D打印机为主,其招股说明书显示其SLM设备成形机时累计突破50万小时。在打印材料方面,铂力特在开发了数种传统钛合金、 铝合金等材料基础上,成功研发增材制造专用新型钛合金粉末TiAM1、铝合金粉末AlAM1。以及主要面向航天、航空、航海、核电等高端制造领域金属3D打印服务的「鑫精合」同样也是主要利用SLM技术进行服务。此外,该公司还掌握激光沉积制造(LDM)的工艺技术,目前拥有50 台自主研发的系列化金属选区熔化设备,11台超大型号自主研发的金属沉积制造设备,在职人员 600余人。另外,在金属(SLM)3D打印领域,还有如「广东汉邦科技」、「永年激光」、「易加三维」、「易博三维」、「西帝摩」等。(2)其他金属3D打印技术LENS(Laser Engineered Net Shaping)是一种基于同步送粉的激光熔覆沉积技术,激光束在控制下,按照预先设定的路径,进行移动;同时,粉末喷嘴将金属粉末直接输送到激光光斑下,使之由点到线、由线到面的顺序凝固,从而完成一个层截面的打印工作,这样层层叠加,制造出近净形的零部件实体。使用该技术的打印机通常会与相应的CNC铣削单元混合使用。美国的「Optomec」上世纪九十年代末开始集中于LENS技术的商业开发,可以做到以五个运动轴移动装置逐渐建立3D金属物体,今年3月推出了两款新的独立系统LENS CS 600和CS 800。国内比较典型的公司是「大连海博瑞思科技」,该公司融合了LENS技术,研发了五轴混合加工制造技术,生产了相关设备并提供相对应的解决方案。电子束选区熔化(EBSM/EBM)是通过在真空环境下使用电子束扫描、熔化粉末材料,逐层沉积制造3D金属零件的工艺,相对于SLM技术加工效率更高,成本也更低,但技术难度相对更高。最早将该技术商业化的是瑞典的「Arcam AB」公司,国内则有「智束科技」,该公司核心技术与团队均来源于清华大学,开发了具有自主知识产权的EBSM®金属3D打印装备,该技术可广泛应用于航空航天高性能复杂零部件和医疗植入体制造等领域。二、非金属3D打印[图片]1、非金属3D打印材料目前能够用于3D打印的材料已有1000多种,绝大部分都是非金属材料。非金属3D打印主要使用的是高分子材料,包括合成高分子材料,如聚乳酸(PLA)、聚乙二醇(PEG)、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)、聚-羟基戊酸酯(PHBV)、聚丁二酸-丁二醇酯(PBS)、聚己内酯(PCL)以及光敏树脂等;热塑性高分子材料,如PC、ABS-M30i、尼龙、PEEK等;天然高分子材料,如藻酸盐、胶原、纤维蛋白原、明胶、细胞外基质、琼脂糖、葡聚糖、葡萄糖、蔗糖、壳聚糖等。加工方会根据不同的3D打印技术特性及应用产品需求,选择不同性能的材料。市场上,也有许多专门研发生产3d打印材料的公司。如「eSUN 易生」,它是深圳光华伟业股份有限公司2007年进入3D打印材料制造领域时创立的品牌。截止到 2019年4月,「eSUN 易生」已经上市了超40种FDM材料、以及适用于光固化3D打印的光敏树脂系列。还开发了iSUN3D医疗鞋垫3D打印系统系统,目前,公司产品拥有 REACH、RoHS、CE、ISO 等全系列认证,全球代理商累计超50个,产品销往了100多个国家及地区。目前,FDM(Fused Deposition Modeling,熔积成型法)是市面上成本最低,应用也最广的3D打印技术,FDM工艺使用丝状材料,可选择多种材料进行加工,包括聚碳酸酯、工程塑料以及二者的混合材料等。因而,也有公司专门针对FDM公司研发材料。如36氪采访到的「Polymaker」,这是一家成立于2012年,在工程塑料的3D打印材料在全世界范围都有较高的知名度的公司,在中国、美国与荷兰均设立分公司,90%以上的产品销往美国、德国、日本等海外市场。同时,该公司也可以根据客户需求研发有针对性的材料,比如为航空公司研制飞机上使用的阻燃材料。另外,同样以FDM线材为主的材料厂商还有「广州优塑」、「Elements 3D」、「青岛宏飞达」、 「深圳市众景优品」、 「瑞贝思三维」、「辰岳科技」、「北京斯科瑞化工」等。除了FDM工艺,DLP和SLA技术也是非金属3D打印中的两种重要工艺(具体技术阐述将在后文展开),它们使用的耗材则是光敏树脂。这类材料的制造工艺难度以及成本都相对较高,高质量液态光敏树脂仍然依赖进口也需要从国外进口。在光敏树脂材料研发生产领域,有「广州双力」这类既生产_塑料丝和光敏树脂的公司,也有专注光敏树脂材料的公司,如「力邦新材料」、「正邦科技」、「雅霖特种材料」等。另外,也会有3D打印设备和服务的公司会涉及到该材料的研发,如36氪曾报道的「塑成科技」、「清锋时代」、「UNIZ」。除了这些主流材料,也还有公司把目光投向了特种材料,如「飞亚新材料」开发了聚芳醚醚腈(PEEN)特种高分子材料、「随身科技」研发了石墨烯尼龙复合材料、「晗宇科技」开发了高精密度3D打印石蜡耗材。2、非金属3D打印设备现在主流的非金属3D打印技术有:熔积成型法(FDM)、立体光固化成型技术(SLA)、数字光投影技术(DLP)、非金属激光粉末烧结(SLS)。[图片](1)熔积成型法(FDM)熔融沉积成型法(FDM,Fused Deposition Modeling),这种工艺是通过将丝状材料如热塑性塑料、蜡或金属的熔丝从加热的喷嘴挤出,按照零件每一层的预定轨迹,以固定的速率进行熔体沉积。主要用途是塑料件、铸造用蜡模、样件或模型制造。但相对于其他几种工艺,加工精度低、时间较长。FDM不用激光,使用、维护简单,成本低,可以满足消费级客户的DIY要求,也能满足企业低价零件制造以及模型制造的要求。36氪曾报道过的「创想三维」就是一家桌面级3D打印机厂商,主要提供用于家庭场景的FDM桌面级3D打印机硬件产品和耗材,年出货量50万台,全年营收的 90% 以上来自于海外市场。除此之外,公司创想三维也研发了大型3D打印设备以及桌面级光固化打印机,在工业级打印同样也所有涉及。同样针对消费级桌面3D打印的公司,36氪还曾报道过「Snapmaker」。除了消费级桌面打印机,更多的公司瞄准的是FDM工业级3D打印市场。比如「弘瑞3D打印」、「复志Raise 3D」、「PMAX巨影」、「海芯科技」等。(2)立体光固化成型(SLA)和数字光处理(DLP)立体光固化成型(SLA),是使用激光束在液态树脂表面勾画出物体的第一层形状,然后制作平台下降一定的距离(0.05-0.025mm之间),再让固化层浸入液态树脂中,如此反复。使用的树脂是光敏树脂,激光束照射后会形成固态。在SLA 3D打印领域,「联泰科技」拥有较高的知名度,据其官网介绍联泰科技目前拥有国内立体光固化(SLA)3D 打印技术最大份额的工业领域客户群,国内市场占有率超过 60%。产品已被广泛应用于手板 模具、鞋业、口腔医疗、文化创意、汽车、电子以及教育科研等多个应用及行业领域。另外,「中瑞科技」也在光固化3D打印机方面有所积累,尽管该公司SLA光固化、SLM选区激光熔化、SLS尼龙粉末烧结和FMS铸造砂模和AMC陶瓷都有打印设备,还提供相配套的3D打印材料和3D打印软件,但光固化3D打印机的种类最多。同时,公司也有涉及SLM金属打印机。其他集中在SLA光固化3D打印的公司,还包括「东莞鸿泰」、「深圳金石」、「嘉兴善维」、「佛山吗卡」。数字光处理(DLP),使用的耗材和SLA一样,都是光固化树脂。DLP与SLA最大的不同在于,DLP用的是投影仪的数字光源,SLA用的是激光头。正因为如此,DLP一扫就是一片,SLA成形只能靠一个激光点。比较典型的企业有「迅实科技」,该公司拥有针对珠宝设计、齿科等多种行业应用的多款打印机。以及「黑格智造」,该公司以“DLP+”在智能化、打印精度、成型速度、稳定性、成型幅面上,相较于传统DLP有了较大的提升,让使用该技术的设备更加适合大规模的终端产品,包括牙齿矫正套、消费类电子产品等的生产。光固化技术相较于FDM来说,最主要的优势就是精度更高,速度更快。目前3D打印企业仍然面对成本较高,盈利较难的困境。很大一部分原因就在于,打印速度难以跟上,效率较低。于是兼顾精度,提升速度的打印方案开始越来越被关注,有企业对传统对光固化技术进行革新已达到更快速度的目的。10月中旬,美国西北大学在《Science》上发表了的新一代高速、大尺寸、光固化的3D打印技术HARP (high-area rapid printing)技术的技术论文。科学家们也以此创办了Azul 3D公司。据南极熊3D打印报道,HARP技术采用垂直打印,用紫外线将液态树脂固化为硬化的塑料。此过程可以打印出坚硬、有弹性甚至陶瓷。与其他3D打印技术常见的叠层结构相反,这些连续打印的零件机械性能很好,可以用作汽车、飞机、牙科、矫形器、时尚等等的零件。在打印过程中,HARP采用液体聚四氟乙烯在接口上流动得以除去热量,然后通过冷却单元进行循环。Azul3D称自己的HARP技术,已经突破了Carbon3D的CLIP技术打印速度的最高纪录,Carbon3D是目前全球3D打印公司中估值最高的企业之一。它的CLIP技术是利用一层透氧膜,隔离光敏树脂液体和空气中的氧气,实现高速、连续的3D打印成型。2019年6月,Carbon获得了E轮的投资,融资规模高达2.6亿美元(约18亿元人民币),而估值则达到了24亿美元(165亿元人民币)。截止2019年10月,Carbon3D已经推出了最新一代的高速量产3D打印机L1,目标就是大批量生产应用的。在国内,也有企业在速度上下功夫。如36氪曾经报道过的「UNIZ」以 LCD-SLA 光固化技术为核心,加上其特有的Uni-Directional Peel(UDP,单向剥离)技术,使得其打印机的精度和速度都能保持较高水平,号称3D打印速度可达1200mm/h以上。还有此前提到的「清锋时代」则研发了类似于光固化的LEAP™技术,据称可将3D打印速度提升百倍。该技术搭配公司研发的可量产高性能弹性材料EM-11,将用于清锋时代3D打印鞋底的批量生产。同样要用3D打印技术量产鞋底的,还有「塑成科技」,该公司采用的是精度更高,速度更快的光固化打印技术,是传统速度的60-90倍。[图片](3)其他非金属3D打印技术SLS,在行业内叫做粉末烧结,其可用材料包括高分子、金属、陶瓷、石膏、尼龙等多种粉末材料。在尼龙3D打印中,「华曙高科」是头部企业,现有员工超过280人,其中研发人员超过 40%,公司共申请专利超过百项,获得专利授权近百项,同时研发金属3D打印设备及尼龙等高分子3D打印材料。此外,该公司在金属3D打印领域也有所涉及。3DP工艺与SLS工艺类似,采用粉末材料成形,如陶瓷粉末,金属粉末。不同的是材料粉末不是通过烧结连接起来的,而是通过喷头用粘接剂(如硅胶)将零件的截面“印刷”在材料粉末上面。如「宁夏共享集团」就采用 3DP 工艺“逐层叠加、增材制造”,把铸造所用的砂芯砂型直接打印成形, 已经建设了3D打印智能工厂。三、3D打印服务[图片]说起3D打印服务,这里我们将其拆分成两类,一类是3D打印供应链企业,它们为3D打印提供后处理等服务,为3D打印生产提供相关软件(包括控制系统)及相关解决方案;另一类则本身不生产3D打印所需的材料及打印机产品,而是提供解决方案设计、直接的打印服务、以及交易平台。(1)软件及系统解决方案供应商3D打印产线不仅需要3D打印硬件产品,同样也需要软件系统的配合。多数3D打印设备厂商会自行研发或是二次开发相关的软件系统。市面上仍有专业的厂商,提供相关方案。如新三板上市公司「金橙子」科技自主研发了3D打印控制系统,该公司的控制卡集振镜控制、激光控制、运动控制、传感器反馈于一体,并同时高精密校正方案、多机加工方案、多种路径规划方案;「 创必得科技」自主研发了赤兔系列主控系统和切片软件,最早实现了 3D 打印脱机控制及多机器分布式控制系统解决方案;「空灵智能」推出的主板品牌「魔印」,该产品搭载了实时监控传输技术,和打环检测技术,使得传统 3D 打印机可以实现互联网打印同时拥有自我检测功能,客户可通过手机 app 对 3D 打印机进行远程操控。同样的3D 打印控制系统供应商,还有「谦辉信息」、「 晋原铭科技」。(2)3D打印后处理3D打印后处理是3D打印重要的步骤,直接使用3D打印出来的物品只是一个半成品,有些表面会比较粗糙,需要打磨抛光,有些需要喷涂、上色;金属制品需要退火、处气、固化。经过后处理,3D打印产品才能最终送到客户手里。今年10月,英国3D打印后处理初创公司「Additive Manufacturing Technologies(AMT)」宣布完成520万美元的A轮融资。去年,德国专注于SLS聚合物3D打印后处理创业公司「DyeMansion GmbH」获得了500万美元的A轮投资。国内后处理厂商并不多,就在2019年10月,南极熊曝光了一个专门做尼龙/TPU等材料3D打印后处理的国产厂商——「东莞德为智能(DYEWIN)」。他们自主研发的3D打印零件表面处理及3D打印零件染色等后处理系统,这一套清粉+表面精细处理+染色的系统价格仅为国外同类进口产品的20%。此外,还有「 苏州诺曼比尔材料」专注金属等材料的3D打印后处理。[图片](3)消费端3D打印服务及3D打印平台在消费端,有公司专注于3D设计软件和设计服务。比如「中望龙腾软件」 就开发了3D One 系列三维创意设计软件 ,主要面对教育领域。另外面对教育市场的提供设计软件及相应解决方案的公司还有「 遨为数字技术 」、「乐伴科技」、「 张飞打印」。也有提供产品设计及打印服务的公司,36氪此前曾介绍过聚焦“3D 打印+文创”的 「 上海极臻三维」, 此外聚焦3D技术消费领域的产品化的公司还有「云迹创意设计」、「 3dans 蛋生」、「 紫晶立方科技 」在3D打印平台方面, 36氪曾介绍过「云工厂」,“云工厂”的主要业务线包括3D打印、手板加工和机械加工,开发设计了专用于中小批量产品加工的标准化流程,将传统制造和互联网连接,可以实现线上下单、自动报价、实时跟踪生产进度和快速交付产品的制造。新三板上市企业「先临三维」也有3D打印服务的子公司「云打印」,云打印打造了“3D 打印+互联网+物联网(IOT)+人工智能(AI)”的技术平台,打造 C2M 和线上线下相结合的 3D 打 印分布式服务模式。公司已在浙江、江苏、南等 全国多个省份的地方政府或园区合作,建立了十几家线下 3D 打印服务中心。类似的提供 3D 打印云平台的公司,还有「易速普瑞」、「南京 1001 号」、「创想智造 3D 打印网 」、「魔猴网」等。此外,还有相关的垂直媒体服务于行业内外的3D打印关注者。比如「南极熊3D打印网」,该平台报道全球最新的3D打印资讯,定期输出3D打印的研究报告,举办行业内交流会议,也为3D打印相关企业提供咨询服务。与它类似,还有「3D打印世界」、「3D科学谷」、「3D打印技术参考」等。四、3D打印的应用[图片]3D打印的应用非常广泛,现今最热门的当属医疗3D打印。医疗3D打印有着数十亿美元的想象空间。从微小的细胞组织,到大体积的骨骼,都是3D打印未来的“战场”。医疗3D打印,首先是用计算机建立三维模型,数据传输至打印机,由打印机逐层打印截面,最后各截面粘合起来完成塑型。我们可以从落地的难易程度,把医疗3D打印划分为两部分:骨科植入物、口腔修复、定制化假肢、手术导板、内植入物,此类非生物3D打印技术,技术更为成熟,更加贴近临床,应用场景明确,是玩家们主要聚集的细分赛道;细胞组织甚至器官组织的3D打印,还有漫长的技术研发之路,是医疗3D打印的进阶阶段,水面上的国内玩家仅有五家。(1)最引人注目的板块莫过于骨科植入物公开数据显示,骨科植入物占整个植入物市场规模的93%之多,预计2022年骨科植入物的市场规模高达290亿元。目前国内企业已经有一些产品获批上市,也有与医院合作手术的成功案例。国内主要集中在金属和高分子材料上,国际上,多数国外厂商采用的是羟基磷灰石和聚乳酸复合材料,还有一些骨科辅助器械则采用的是石膏或树脂材料。举几个例子,「爱康医疗」的3D ACT钛合金骨小梁髋臼杯在2015年获得了上市许可;「艾科赛龙」也聚焦3D打印骨科耗材,它的特点是具备介入式手术的导航板方案,帮助扫除手术盲区;「 欧比雅」与广州医科大学附属第三医院合作,帮助一名有十年病史的踝关节慢性骨髓炎患者置换病灶骨骼。通常我们有一些维度去评价骨科植入物的技术水平:材质的抗磨损性能和生物相容性、孔隙率、摩擦系数、旋转活动度(分散应力)、铰链机制(防脱易植入)、承重方式(损耗程度)、补块垫块的丰富性(骨缺损处理方案的丰富性)、手术及翻修策略等等。(2)风口上的隐形牙套,正是3D打印的成果3D打印的另一个细分赛道是数字化口腔修复,现在技术已经可以制作种植牙、义齿、正畸产品等等,还可以达成相关关节紊乱病的治疗修复。隐形正畸正处于投资风口,正畸量在近几年来有着爆发式的增长,诊所的毛利率通常在50%-75%。而隐形正畸所用的隐形牙套,正是3D打印的成果。3D打印可以带给用户个性化的精准矫形,扫描仪掌握数字化地口腔状况,建立个性化的口内3D数字模型,从而生产出“量身定制”的隐形牙套。根据平安证券口腔报告测算,2017年中国国正畸病例大约206万例,每例按12000元计算,则中国正畸市场规模在 250亿左右。[图片]对于义齿厂而言,3D打印机不仅能够实现人工替代,还能够提高生产效率和品质。全国有4000多家义齿厂,随着产业的升级、进口替代的加速,未来将有更多的3D打印机进入义齿厂,未来五年市场规模有望超10亿。以往困扰口腔医生的是,初期设计的轮廓外形总是很难与最终得到的修复体一致,而3D打印就很好地解决了这个问题。3D打印的目标修复体导板,可以将修复蓝图可视化地呈现出来,根据导板打印而成的修复体,可以做到高精准度,让“理想”和“现实”达成一致。还有一些公司擅长三维数据采集,为医院提供手术前规划方案,用可视化的图像模拟手术,帮助医生更好地操作演练。这个赛道上,「浙江德尔达」的做法是,通过对病患部位的三维重建,设计手术导板,手术导板就像是一个“手术用的地图”,让医生可以通过实体模型来规划手术;「即刻叁医疗」将3D技术应用在了血管外科、肝胆外、肿瘤、颌面外科。数字化口腔赛道的公司相对较多,包括此前文章提及的「迅实科技」、「瑞通生物」、「UNIZ」、「 黑格智能」、「精唯信诚」、「长朗智能」等。(3)世界首颗3D打印心脏诞生"医疗3D打印的进阶阶段",就是细胞组织甚至器官组织的3D打印。今年4月15日,以色列特拉维夫大学研究人员宣布成功3D打印出世界首颗“完整”心脏的新闻轰动全球。一夜之间,“3D打印器官”仿佛触手可及,器官移植供体紧缺似乎不再是问题。[图片]然而冷静下来,我们会发现:这个“心脏”很小,并非人类尺寸;血管系统并不完整,毛细血管未被打印出来;此“心脏”尚不具备泵血功能。尽管距真正可移植的心脏还有一段距离,但是这颗心脏的诞生,仍然引起了巨大的轰动。为什么呢?答案是,它与组织工程构建技术有关。经典组织工程构建首先需要两类材料——种子细胞和支架材料。支架材料顾名思义,起到的即“支撑”作用。它为种子细胞提供生长和发挥生物学功能的场所,需要具有模仿天然组织的构建性能。种子细胞则是在支架材料上联结、生长成所需组织、器官的单位。怎样的支架材料无毒、无免疫原性,具有良好的生物相容性、合适的生物降解性,同时适合细胞生长?怎样获得多功能干细胞,并使其定向分化成所需的种子细胞?如何维持所获组织、器官的细胞活性?怎样令打印出的组织/器件功能化?这些都是摆在科学家和企业面前的问题。特拉维夫大学研究人员即是解决了部分这些问题后,打印出了具有细胞、血管、心室和心房的“完整”心脏。这同时意味着,结构更简单的耳朵、气管、血管等组织器官可以完全重现。无排异的组织移植或许能先一步到来。目前,36氪收集的公开资料显示,全球生物3D打印的市场规模在30亿元左右,全球领先的生物3D打印公司包括美国的「Organovo」、日本的「Cyfuse Biomedical」、加拿大的「Aspect Biosystems」等。而国内从事器官、血管等组织工程3D打印的企业,仅有数家,分别为:「上普生物」、「迈普医学」、「捷诺飞生物科技」、「尤尼科技」、「蓝光英诺」等。FDM和光固化是目前较为主流的打印技术,上述”心脏“即是FDM技术下打印出来的。光固化技术的优势在于成型容易,但是容易产生毒性问题。细胞打印产业化的难点,除了技术,还有伦理道德乃至风险控制。社会对此类产品的接受程度、生产过程中可能带来的病毒等风险,也在一定程度上制约了行业的发展。据悉,现在企业提供的业务多为:生物3D打印机的定制、售卖;生物墨水等其他耗材的定制、售卖;生物仿真模型的打印服务等。目前行业内可降解组织工程支架的打印相对成熟,细胞、组织、器官的3D打印处于科研应用阶段的居多。短期上看,生物(细胞)3D打印比较现实的落地场景在于,打印具有单一功能的类组织来进行体外药检、病毒理测试,乃至化妆品、保健品的效果测试。往远了看,即最终应是实现器官移植,造福人类。随着技术的日益成熟,3D打印产品的生产制作或许将不再是最大难题。行业玩家们共同面临的问题,其实是政策审批的问题。由于医疗3D打印产品可能会直接用于人体,且产品都是根据患者情况个性化定制的,每位患者的情况都会有所不同,所以对它的审批是非常严格谨慎的,相关政策滞后于技术。3D打印产品以往没有适用的取证规范,定制化的产品导致取证成本很大,用在每一个身体部位都需要申请一张医疗器械证,取证成本极高。最新的动态是,今年7月国家出台了一项新政策,预计能为医疗3D打印带来强心剂。这项新政是《定制式医疗器械监督管理规定(试行)》,规定了定制式医疗器械的备案管理、设计加工、使用管理、监督管理的规范,从明年1月1日起施行。纵观整个3D打印市场,其应用范围非常广泛,从医用至工业至消费,都可以看到3D打印的身影。医用领域包括医用手术导板、医疗植入物、齿科模型及相关矫正设备、金属牙冠等物件的制造;工业方面,有工业产品设计开发、复杂小型金属精密零件、航空航天复杂金属构件、飞机大型复杂金属构件、航空航天领域用工程塑料零部件、汽车、家电等领域零部件制造、铸造用蜡模制作以及建筑建造;在消费领域则包括,手办制作、珠宝设计与制作、创意产品制作与生产、以及食品制作等。这篇文章,36氪只盘点了最热门的医疗3D打印。接下来,36氪还将聚焦3D打印在其他行业的应用,进行分析和盘点。制图:chuyi其他图片来源:uniz

    - 暂无回复 -
  • 12月29日,由科技日报社主办,部分两院院士和媒体人士共同评选出的2019年国内、国际十大科技新闻揭晓。入选的2019年国际十大科技新闻分别是:中国“嫦娥四号”实现人类首次月背软着陆;高度扩展的仿生物细胞机器人诞生;人类获得首张黑洞照片;3D打印出会“呼吸”的人造器官;超导材料最高临界温度刷新;新癌症疫苗让CAR-T疗法高效攻击实体瘤;全球首座浮动核电站正式启航;“量子霸权”实现:200秒完成万年计算;“基因魔剪”升级,新基因编辑系统问世;“万物DNA”材料让存储无处不在。1、中国“嫦娥四号” 实现人类首次月背软着陆月球之背,宁静之地。此处屏蔽了来自地球的各种无线电干扰信号,可以监测到地面和地球附近的太空中无法分辨的电磁信号,为研究恒星起源和星云演化提供重要资料。所以天文学家一直希望利用这片寂静去监听来自宇宙深处的微弱信号,但长久以来,从未有航天器登陆过月球背面。今年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近的预选着陆区,并通过“鹊桥”中继星传回了世界第一张近距离拍摄的月背影像图,实现了人类探测器首次月背软着陆。[图片]嫦娥四号着陆器地形地貌相机环拍全景图(方位投影)。新华社发(国家航天局 供图)12月21日,着陆器受光照自主唤醒,按计划继续对月表线性能量转移谱、综合粒子辐射剂量及月表低频射电特征开展有效探测工作。静静的月背,太阳光照射在“嫦娥四号”着陆器上。繁忙的地面,在月背刻上中国足迹的青年人团队,平均年龄仅为33岁。2、高度扩展的仿生物细胞机器人诞生地球生物皆由细胞构成,而细胞集体运作能力的强悍与复杂,至今人们也不能说完全了解。可如果能够在智能领域模拟出一定程度的细胞组合运动,并能轻易扩展,那么理论上,便可以利用大规模机器人创造出无限的可能。美国哥伦比亚大学和麻省理工的科学家3月份报告了一种能模拟生物细胞集体迁移的机器人,25个物理机器人“粒子”,能移动、搬运物体以及向光刺激移动。[图片]仿生物细胞机器人图源:《自然》网站有意思的是,单个机器人“粒子”并不能移动,但如果其中一个或几个成员“丧失行动能力”,也不会对整体有大影响——在20%粒子失效的情况下,其仍能以完整状态一半的速度运行。而在传统机器人,单独个体的缺失,往往会导致满盘崩溃。25个松散的“粒子”,可以轻易扩增为十万个,这比此前传统机器人和仿生系统具有更高的可扩展性,也为开发有预先确定性行为的大规模群体机器人系统,提供了全新途径。3、人类获得首张黑洞照片在我们所有人头顶,在几乎每个大星系的中央,黑洞无声无息地盘踞、吞噬、辐射。当天体物理学发展到一定程度,没有任何一个文明可以对黑洞视而不见。天文学家们为此搭建了一张行星级观测网——“事件视界望远镜(EHT)”,它比任何独立设备都更了解黑洞,它还能达到足够分辨率来区分光被拉入黑洞时的状况。拜其成全,从来都无法直接观察到的黑洞,此次“眼见为实”。[图片]首张黑洞照片图源:NASA官网北京时间4月10日21时7分,全球6个城市(比利时布鲁塞尔、智利圣地亚哥、中国上海和台北、日本东京、美国华盛顿)在同一时间公布了首张黑洞照片,揭示了室女座星系团中超大质量星系M87中心的黑洞。黑洞这一神秘天体,终于展露真容。黑洞“现身”的同时,其中的物理现象还很可能为我们阐明广义相对论和量子力学间的巨大矛盾——众所周知,这二位“不和”已久,皆因我们找不到一种既是宏观又是微观的东西。而黑洞,恰好兼具大尺度宏观形态和小尺度微观量子理论的特性。这就是科学的进步,既不会忽略小到无法体验的粒子,也不会避开大到超乎你我想象的物体。4、3D打印出会“呼吸”的人造器官“上上世纪的思想,上世纪的技术,本世纪的市场”,说的就是3D打印。但在今年,这项已然不再新鲜的技术取得了具有里程碑意义的成果。5月,《科学》杂志封面报道了美国莱斯大学与华盛顿大学主导的研究,该团队克服了3D打印器官的一大障碍,创造出一个由水凝胶3D打印而成的肺气囊模型。[图片]3D打印肺气囊模型图源:《科学》网站这个模型,具有与人体血管和气管结构相同的网络结构,在体外模拟肺气囊生理学功能,实现了往周围血管输送氧气,完成了“呼吸”过程。而通常认为,只有3D打印的组织能像健康组织一样“呼吸”,且构建出可与其他组织交互的管路系统,才可以说它在功能上已经接近一个健康组织。这项成果被认为代表了3D生物打印可实现的最强生理功能,它也意味着,未来的器官移植以及人类寿命延长等许多问题,都将可能得到解决。5、超导材料最高临界温度刷新应用物理界有一个终极使命,就是寻找能在室温下具有超导性的材料并将其用于生活中。一般的材料在导电过程中会消耗大量能量,而超导体在传输中几乎没有耗损,还能在每平方厘米上承载更强的电流。但目前,超导材料只有在低温环境下才会具有超导性。[图片]超导材料最高临界温度刷新图源:《自然》网站今年5月,美德两国科学家团队在《自然》上发文称,其所观察到的3个特征已可证明,在250K(约为-23℃)的温度下,氢化镧在超过100万倍地球大气压下会变成超导物质。而250K,是迄今为止超导材料中证实的最高临界温度,其距离室温的295K已并不遥远。值得注意的是,在2018年,已有两个独立研究小组同时发布对压缩氢化镧化合物超导性的理论预测,并指出了其临界温度范围值。这一从“预测”到“验证”的过程表明,人类对超导材料的研究可能进入了一个新阶段——从靠经验规则、直觉或运气发现超导体,向由具体理论预测指导研究过渡。6、新癌症疫苗让CAR-T疗法高效攻击实体瘤誓要向癌症进军的CAR-T疗法,还缺一副铠甲。现在,“抗癌疫苗”可做其铠甲。在人类与癌症抗争的历史长河中,CAR-T疗法独占鳌头。这名字中的T,是指从患者体内分离出免疫T细胞,再在体外对这些细胞进行基因改造,给它们装上识别癌细胞表面抗原的“嵌合抗原受体”——即名字中的CAR。[图片]设计新型疫苗以增强CAR-T细胞。图源:《科学》该明星疗法被认为彻底地改变了癌症治疗格局,但却有一定局限——仅能治疗某些类型的白血病。但今年7月,麻省理工学院科学家们在《科学》杂志上发表了题为“利用疫苗增强CAR-T细胞治疗实体瘤的疗效”的研究。他们开发出新型“抗癌疫苗”,可以让CAR-T细胞对实体肿瘤进行攻击,极大提高CAR-T疗效,最终可清除60%的小鼠体内的实体瘤,此外还能刺激免疫系统产生记忆T细胞,防止肿瘤复发。这项开创型的研究,不啻于为千万人带来希望,而对研究者来说,它为对抗实体瘤的攻坚战提供了新思路。7、全球首座浮动核电站正式启航20870型“罗蒙诺索夫院士”号浮动核电站,是移动式低功率核电机组的首型号,也是世界上最北端的核装置。浮动核电站本质上就是一个建在船上的核电站,因其安全性和经济性获得各国广泛持续关注,被认为是最理想的海洋能源开发保障。8月23日,“罗蒙诺索夫院士”号从俄罗斯北极不冻港摩尔曼斯克港启航,9月抵达楚科奇地区的佩斯韦克市,随后连接到电网。[图片]首座浮动核电站图源:俄罗斯卫星通讯社12月份,浮动核电站开始试运行。等正式运营后,它将能替代当地一座陆上核电站和火力电站的发电产能。这座浮动式核电站在设计时留有了很大的安全余量,两台KLT-40S反应堆能产生高达70兆瓦的电功率,可以满足一个10万人口城镇的能源所需。“罗蒙诺索夫院士”号启航,标志着俄罗斯在该领域取得实质性突破。现在,俄国家原子能公司正在研制第二代浮动式核电站,将成为解决北极等特殊地域能源供应的重要选项。8、“量子霸权”实现:200秒完成万年计算当量子计算在某些任务上拥有超越所有传统计算机的计算能力,就是“量子霸权”。9月,谷歌发表题为《使用可编程超导处理程式的量子优势》的文章,宣布其实现“量子霸权”:一台可编程量子计算机超越了最快的经典超级计算机。该量子系统只用了约200秒,就完成了经典计算机大约需要1万年才能完成的任务——而这里惨败的对手,是目前世界排名第一的超级计算机、美国能源部橡树岭国家实验室的“Summit”。[图片]谷歌的量子处理器芯片图源:《科学》网站秒杀经典计算机业界翘楚,这一成就被视为量子计算的重大里程碑事件,“对世界领先的超级计算机实现量子霸权,无疑是一项了不起的成就”。但也要看到,从实用的量子计算系统再到通用可编程的量子计算机,其路漫漫。在量子计算机投入实际应用前,还需开展更多工作,譬如,实现可持续的容错运算。9、“基因魔剪”升级,新基因编辑系统问世CRISPR-Cas这把“基因魔剪”的潜力,一直受到难以进行精确修饰的限制。近年来,我们看到基因组编辑技术取得了重要进展,但是已知的约75000个人类病理性遗传变异体,大部分仍无法得到有效修正——受到复杂细胞过程的影响,CRISPR-Cas在精度和效率上并不完美。[图片]基因组编辑的演变图源:《自然》网站但现在,许多研究工作正集中将不完美平衡为一种精确的编辑。今年10月,美国博德研究所等机构的科学家在《自然》发文称,他们开发出新型多功能基因组编辑技术,可以精确地编辑基因,而不造成DNA双链断裂。其比传统Cas9效率更高、副产物更少、脱靶率更低。这项新技术名为“先导编辑”,原则上,其可以修正约89%的已知与疾病相关的人类遗传变异体。基因组编辑的最终目标,就是能够对生命蓝图做出任何特定的改变。而一种用于基因组编辑的“搜索和替换”方法,使我们朝着这一宏伟目标迈出了一大步。10、“万物DNA”材料让存储无处不在人们随口就说“数据暴涨”这个词,但你我只是转手去买块新硬盘,但对技术人员来说,数据量的不断增加、既有存储架构的不足,是恐惧之源。传统存储方式难以为继。幸好,我们还有“更传统的”——依靠自然界神奇而精巧的生物存储。有人研究过,DNA信息储存密度为一千万TB/立方厘米。在这种密度下,一个大约一米长的DNA立方体,就能满足目前世界上一年的信息储存需求。而且,它如此稳定。[图片]用“万物DNA”特殊材料3D打印的兔子 图源:《自然·生物技术》今年12月,哥伦比亚大学著名专家、以色列计算遗传学家亚尼夫·埃尔利赫与苏黎世联邦理工学院报告了一种运用“万物DNA”特殊材料3D打印出来的“兔子”,该材料包含了用以合成DNA编码的兔子蓝图。之后,原始兔子所含的DNA被解码,并稳定复制了五代兔子。这种新的存储架构,意味着DNA存储的潜力又被进一步拓展。而今年稍早时间,美国微软与华盛顿大学也联合公布了全球首个全自动DNA数据存储和检索系统。这是人类首次采用全自动手段去进行DNA存储。全自动的合成和读取,不但有助于推动规模化并降低成本,还将是DNA存储技术从实验室走向商业数据中心的关键步骤。来源:科技日报

    - 暂无回复 -
2360 条记录 5/236 页 上一页 下一页 12345 下5页 最后一页
2360 条记录 5/236 页 上一页 下一页 12345 下5页 最后一页

温馨提示:未注册aau账号的手机号,登录时将自动注册,且代表您已同意《用户服务协议》

第三方账号登录

登录成功

祝您使用愉快!

倒计时 5 秒,自动关闭

注册账号

推荐码推荐 其他
您的输入有误 注册
《auu用户协议》
我有账号?

忘记密码

验证成功,重置密码

收起+

一键3D打印
一键3D打印